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1.     SUMMARY 
It has been difficult for the US military to leverage cloud computing, for a great number of 
reasons.  Today’s commercial cloud and even the government cloud offerings evolved in 
response to competitive opportunities and pressures.  It offers new capabilities: a rent-on-demand 
computing model, the potential for dramatic elasticity (launching large numbers of applications 
on short notice at runtime, and for hosting huge amounts of data), tools for data mining in 
parallel at massive scale and carrying out machine learning and other optimization tasks on huge 
data sets, tools for graphical knowledge discovery, etc.  On the down side, however, the cloud 
has a security model strongly shaped by commercial security for web purchases using credit 
cards.  The consistency model is shaped by a desire to rapidly respond to queries using cached 
data, even if that data might be stale.  And the list goes on: cloud users worry about the safety of 
data on the data center disks, even if encrypted.  They worry about vendor lock-in, and about the 
danger that a critical system might be unavailable at time of urgent need because of some form 
of third-party cloud outage. 
 
Some of these issues are non-technical, and for those problems, research won’t help.  But the 
industry is prioritizing hybrid cloud computing support (where the cloud augments traditional 
owned and locally-hosted systems), government cloud (where some roles normally played by 
third parties like Amazon are instead played by military personnel), and real-time cloud (where 
cloud services are explicitly designed to interface with devices in the environment).  Such trends 
are promising: one can imagine selective use of cloud resources in appropriate ways that don’t 
place inappropriate trust upon the cloud, yet leverage its strengths, which include modes of 
computing such as very rapid elasticity, where one normally runs in a slimmed down mode but 
when requirements surge, can allocate a lot of computing resources on short notice, perhaps 
using a preloaded database that could be huge and that has to be spread over huge numbers of 
machines.  In a private setting, such patterns are very expensive; with a shared cloud, the cost 
drops dramatically.   
 
The key to our work is to leverage cutting edge technology options but also to enhance and 
secure them, by layering in extra solutions as needed in a cautious way. For example, our system 
includes a new and very active form of system management that we combine with an easily used 
way to replicate data (even data being rapidly updated) in a manner that is secure and strongly 
consistent.  With such steps, we are able to compensate for the limitations of the commercial 
offerings: the standard cloud has a more relaxed style of system management aimed primarily at 
the three-tier programming model that prevails in commercial cloud uses, and favors weakly 
consistent replication solutions that are also at greater risk for insider attacks or other forms of 
data contamination attacks.  Thus with a few small steps we greatly enhance usability of the 
cloud in settings that want to leverage the cloud yet need more. 
 
In fact these are just two of a number of innovations we created.  Our HACC effort (Highly 
Assured Cloud Computing) in the Mission Oriented Resilient Cloud (MRC) program 
successfully demonstrated that this approach really can work well.  Our work reflects a very 
dynamic process of creating enabling technologies, but then using them to gain experience, then 
turning around and employing the insights so gained to improve our work or identify further 
needs.  As noted, we did this by working with the community creating the smart power grid, and 
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built a real cloud platform called GridCloud for capturing and monitoring power grid state at a 
scale never previously attempted.  GridCloud is real and is actually being rolled out now to 
monitor the bulk power grid for the US Northeast, initially as a research prototype, but with hope 
that the live system will come to play a major role.  Thus our MRC work has actually impacted 
one of the nation’s top priorities: smart grid matters both because of the benefit in terms of use of 
renewables, but also because a smarter grid can be protected more effectively against terrorists or 
other forms of manipulation. 
 
It is important to emphasize that GridCloud is just one application among many that could be 
created using our MRC-created hardened cloud computing tools and solutions.  GridCloud was 
actually simple for us to build: we just specialized the general purpose tools that our MRC effort 
created, by writing simple applications that “understand” the power grid data formats and the key 
resources that characterize power grid system state, then added a simple monitoring and 
program-launch framework that lets our power grid users import applications from their existing 
High Performance Computing (HPC) clusters and run them in the cloud (not all HPC 
applications can support such a move, but it turns out that for the power community, luck was 
with us and the most important applications migrated with ease).  Thus in a few steps our MRC 
solutions enabled us to solve this pressing power grid need. 
 
In fact, GridCloud breaks important and “disruptive” new ground for the bulk power community: 
the solution can monitor even a national-scale power grid, is scalable, turns out to be very cheap 
to own and operate, and quite fast, and further that it can withstand many kinds of failures or 
attacks.  But our solutions are far more general and could solve a wide range of such problems.  
We think that as the cloud user community gains comfort with the idea that the cloud (or at least 
the hybrid cloud, using a government cloud as the cloud platform itself) can do these things, 
cloud computing becomes a far more appealing option for highly sensitive use cases, including 
military ones.   
 
At risk of a very slight digression, we find it interesting to realize that smart grid is often 
perceived as a pure problem of applying machine learning to the power grid, as if the 
infrastructure side of the smart grid problem was a solved thing – as if the cloud can just do the 
job.  But what we with GridCloud is that often, the missing enabler isn’t purely a new kind of 
optimization-based demand-response control solution, or some other expert system or machine-
learning tool, but rather a whole system that needs to be robust and to have real-time properties 
from the bottom up.  To enable the creation of those smart tools, we have to have a place to run 
them, and data for them to run on, and have to get the data to the tool, and the answer back into 
the field, within deadlines.  Huge investment has focused on the potential of machine learning… 
far less on this middle layer.  Our work has an unusual impact because it bridges this gap, and 
thus enables the community building the machine-learning “smarts” to suddenly apply their ideas 
in a completely new settings, and to do so without recklessly trusting the cloud to have 
guarantees that the commercial cloud in fact lacks. 
 
Beyond the power community, we have also worked closely with the military to help educate 
thought leaders and decision makers on the options and limitations of the cloud.  For example, 
one of us (Birman) met frequently with Air Force leadership in the Pentagon during a 3 year 
period when that team was tasked with developing a cloud strategy.  Through this dialog, the 
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office of the Air Force CTO and CIO (at that time, Mr. Gilligan, succeeded by Mr. Tilotson and 
then Mr. Kent Werner) and the office of the Chief of US Cyber Command (General Lord) 
benefitted from our insights and used them to shape their own plans and expectations relative to 
what vendors could, or could not, reasonably be asked to do in this space.  We’ve also 
maintained a very good and active dialog with Mark Linderman, Pat Hurley and others at AFRL 
Rome, and with the DARPA team that ultimately produced the RADICS BAA, which is 
presently open.  Our Vsync software library (called Isis2 until recently) has been downloaded 
5500 times since 2012, and the numbers are growing steadily.  Our SuperCloud software is being 
used at IBM and elsewhere.  Our dialog with the European Air Traffic Control agency has 
helped them harden core aspects of their new 4 Flight platform.  Thus, we are having real impact 
on important problems.   
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2. INTRODUCTION 
 
Cornell’s MRC effort undertook to help the military leverage cloud computing (elasticity, better 
data center utilization, automated management). Military and other high assurance applications 
have previously been denied these benefits because cloud computing is notoriously weak on 
consistency, fault-tolerance, and security.  With our new cloud computing “tool chain”, 
applications needing high assurance can be implemented with ease and in the same general 
manner as is used to create today’s standard cloud computing applications and services.   
Additionally, our SuperCloud (a related but distinct project under the same MRC funding) 
reduces vendor lock-in and permits application to migrate, to follow the sun or leverage 
inexpensive cloud resources.  Jointly, these efforts offer a major advance in the ability of the 
government and military to leverage the cloud. 
 
We demonstrated our work in an area important to the military: the smart power grid.  Protection 
of the power grid has been identified as a major national defense priority. At the same time, 
progress towards a smarter grid offers a chance to save power and increase utilization of 
renewables.  The big puzzle is that as technology reaches into the grid, the potential attack 
surface is growing.  Our approach has been to argue that yes, we should seize these benefits, but 
at the same time, should use the MRC-developed resiliency technologies created by our effort to 
ensure that the new solutions will be hardened against disruption or attack, scalable, and able to 
leverage powerful cloud-hosted machine intelligence tools, both to operate the grid more 
effectively, and to rapidly sense and repel attack.   
 
Working with Independent System Operator New England (ISO NE), New York Power 
Authority (NYPA) and New York Independent Systems Operator (NY ISO) (owners of the bulk 
electric power grid in the US Northeast) and with domain experts from WSU in Pullman Oregon, 
we created GridCloud, which showcases our work in a form they can use directly.  The ISOs are 
using GridCloud in preproduction experiments, and while the work is far from finished, we 
based a DARPA RADICS proposal on it and believe that with a few more years of research and 
development, we can solve the broad problem and leave the nation with a power grid that can be 
defended even against major, carefully coordinated, acts of aggression. 
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3. METHODS, ASSUMPTIONS, and PROCEDURES 
 
No ambitious system can be viewed as a monolithic whole, and this is definitely the case for our 
work.  Instead, we like to think of our project as a hierarchical set of software layers: more 
foundational ones at the bottom of the stack, and then higher level layers enabled by the basics 
that reside at higher levels of the stack.  The integrated whole enables the ambitious 
demonstrations we mentioned, such as our GridCloud platform for the smart grid.  But within 
GridCloud one finds high level domain-specific solutions that run over lower level frameworks, 
which in turn have assurance properties expressed and verified using our formal models and 
verification methods. 
 
By analogy, one could think of the existing commercial cloud.  From the bottom up the cloud 
starts with virtualization (or perhaps today’s Docker style of partial virtualization, but the idea is 
really the same).  Large numbers of virtual machines can be launched on a single multicore 
computer, and this is the bread and butter of cloud technology.  With the VM is an operating 
system, and it hosts elaborate services, and those in turn support domain-specific applications.  
So you can see how again, there are layers present.  Our software has layers one can understand 
as extending the VM environment, primarily focused on strongly assured data replication.  We 
add services to the VM environment that make use of our low level layers.  And then over these, 
we offer applications that in turn layer these services.  We effectively parallel the standard 
structure, but add things to it that enhance the normal guarantees. 
 
We’ll illustrate this with two examples.  As a first one, consider our work on SuperCloud.  The 
SuperCloud idea is to take standard cloud virtualization (Xen, which is widely standard and 
popular), and extend it to become a “container” that can be moved about.  With SuperCloud we 
can move a cloud image from machine to machine or even from data center to data center.  This 
is technically hard, as explained later in the report, but turns out to be feasible, and it enables a 
powerful kind of flexibility.  For example, the Air Force worries about vendor lock-in: what if 
cloud resources are obtained from vendor A, but this vendor becomes problematic (which could 
happen in many imaginable ways).  With SuperCloud, everything running on vendor A can be 
replicated on vendor B or even dynamically moved to B.  Thus the military can pull back in 
situations that cause concerns, and by eliminating this key worry, cloud computing becomes far 
more feasible.  SuperCloud lives in the lowest layer of the cloud: it creates a new kind of 
virtualized environment but the applications just see a normal version of Linux or Windows 
hosted in what seems like a normal Xen environment, with no changes needed.  As explained 
later, we even virtualize the computer network and move it with the containers, so that no matter 
where they are launched, they see what they expect.  
 
Focusing still on the very lowest layer, a second technical centerpiece of our work has been 
focused on finding highly scalable, elastic, ways to do data replication with strong assurance 
guarantees. The classical ways of solving high assurance replication problems had not scaled 
particularly well and such solutions had often been overly disrupted when members join or leave 
an application. Our approach merged the Paxos state machine replication model with the virtual 
synchrony dynamic epochs model to factor out expensive membership overheads, taking them 
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off the critical path and enabling ultra-fast replicated data updates and reads in a very strong 
consistency model. This in turn permitted us to offer a plethora of other services that run over the 
basic infrastructure, such as a scalable way of managing key-value storage with strong assurance 
properties.  
 
This first accomplishment allows us to climb the cloud technical stack, by offering strong 
assurance at higher and higher levels.   As noted, we ultimately tackled all levels of the stack: 
bottom right up to the application itself. Our team worked with theoretical tools and in fact 
leveraged technology from the DARPA-supported CRASH program, which used automated 
logic (theorem provers) to harden the same sorts of replication protocols of interest in our effort. 
We then implemented the best protocols in a cloud-oriented platform, currently available in a 
beta release from Vsync.codeplex.com.   
 
The Vsync software platform, which was initially called Isis2 and then renamed in 2015, is a 
software library that makes it very easy to harden applications.  For example, suppose that a 
developer has designed a service that takes images of faces as input and checks rapidly against 
an evolving database of known threats to see if there is a match.  It is much easier to build such a 
service “statically” than to make it fault-tolerant and scalable.  The static version just requires a 
sample database of images and a high quality face comparison method.  In contrast, the fault 
tolerant version might need to be spread over many machines, to accept distributed updates in 
real-time, to be secured against disruption by intruders, etc.  With Vsync, simple library calls 
solve these kinds of problems: we can form a “group” of servers that have a shared state, and 
each can update the group state using simple methods that guarantee consistency, for example by 
coordinating the order of updates so that conflicting actions are performed in the same order at 
all copies, and so that any failure is handled consistently by all participants.  The original static 
version of the service is thus transformed into a replicated one.  With a further step, our 
CloudMake software manager can be programmed to automatically restart failed elements, to 
monitor for load imbalances, or to perform automated upgrades as new versions become 
available.  Thus step by step the hard parts of the job are standardized and automated.  It 
becomes easy to create a military-strength version of our face recognition software, and to scale 
it to handle huge numbers of clients.  
 
In our approach, Vsync is thus a core component.  It lives in the standard cloud and is just a 
library, coded in the standard way, but this particular library can be used by all sorts of 
application developers  who have needs that come down to data replication, fault handling, and 
parallel processing. Over the course of our DARPA-funded effort we used a cycle of theory, 
implementation and experimentation to understand the limits on our own and other best of breed 
solutions, to build new approaches, and to compare them to the best existing options under 
serious cloud deployment and load cases. To ensure that our work is valid we teamed with early 
adopters from research labs at MITRE, LLNL, Department of Energy (DOE) Smart Power Grid, 
and the Air Force and looked at ways of building real solutions that offer high assurance and yet 
benefit from the cloud.  Over time, additional users surfaced, such as the consortium of smart 
grid operators we mentioned earlier: jointly, ISO NE, NY ISO and NYPA control the power grid 
for the entire US Northeast. 
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We worked to extend the current commercial cloud in specific areas where the commercial cloud 
has weak assurance properties. These include cloud replication tools (which are slow and lack 
assurance guarantees), cloud security (which focuses mostly on the kind of security needed for 
the https interactions used to make purchases), cloud control of internet sessions (TCP is often 
cited as a weak link between the cloud client and the cloud service) and even the authentication 
and authorization methods used by cloud services to deal with policy enforcement. By importing 
strong models that have a rigorous theoretical basis and are even supported by tools of the kind 
being created by our colleagues in the DARPA CRASH program we are able to offer libraries 
that run on standard cloud platforms but can do far more than those standard platforms normally 
permit, notably in respects concerned with data replication, consistency, coordination and 
parallel processing.  With our work on GridCloud we went beyond the original DARPA MRC 
goals and were even able to demonstrate highly assured embedded sensing and control solutions 
that reside on the cloud but can monitor an infrastructure that might be widely distributed and 
massive in scope. 
 
Our deliverables focused primarily on new theoretical models and results, implementation of 
those results in the Vsync platform, and papers reporting on our challenges dealing with massive 
scale, rapid elasticity events and other events seen in cloud settings (which often experience 
transient overloads, bursts of packet loss, and bursts of failures, to list just a few such 
challenges). The resulting deliverables thus consisted of research papers and open-source 
software distributions, as part of the evolving Vsync platform (Vsync.codeplex.com).  Examples 
of papers we created include [1,2,3,4,5,6,7,8,9,10, 11,12,13,14,15, 16,17,18,19,20,21,22,23,24,25 
,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44]. 
 
New versions have been made available for all our software deliverables from time to time, 
sometimes as often as every few months, sometimes less frequently, fixing bugs and 
incorporating our latest advances. Demonstration programs and applications were released, as 
well as documentation and self-install scripts. We also improved Birman’s textbook [3], 
transforming it into a how-to guide to building reliable distributed cloud computing solutions. 
Springer-Verlag released the new edition in early 2012. 
 
Our open source approach to technology release has made it easy for potential commercial or 
military users to work with Vsync and other Cornell developed technologies. We also provide 
additional help in some cases, including consulting via phone or in person, short courses, etc. We 
are not currently planning a commercial spin-off for Vsync (this could change but currently 
seems unnecessary); our view is that there is a strong demand for high assurance cloud 
computing, but that any required technologies need to be as inexpensive as possible to match the 
free technology offerings from the major vendors. 
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4. RESULTS AND DISCUSSION 
In this section we give a tool by tool summary of the approach we tool to our main subsystems 
and software components.  Each corresponds to far more extensive discussion in papers, 
technical reports and documentation, hence we treat this section as a review but not a deep dive: 
a deep dive would require a text-book length report.  But we do encourage the interested reader 
to turn to our definitive papers for the details we elided here. 
 
SuperCloud: Our approach and accomplishments 
Supported by DARPA MRC, the Supercloud platform is a nested virtualization platform, running 
Xen as a virtual machine monitor (VMM) “within” a normal cloud virtualization infrastructure 
and using a virtualized software-defined network (SDN) overlay to encapsulate the desired 
network environment [45,42,46,47]  Applications running in the Supercloud environment can be 
transparently and automatically mirrored at multiple locations, migrated live from place to place, 
frozen (and migrated), or co-hosted with several instances side by side on the same machine, all 
with no changes to the software running within the Supercloud itself, which sees a full Linux or 
Windows environment and a full enterprise network stack, secured using cutting-edge SDN 
techniques. 
 
Supercloud has been deployed using resources from several major cloud providers, including 
Amazon Elastic Compute Cloud (EC2), Rackspace, Hewlett-Packard (HP) Cloud, and some 
private clouds. We have developed a new storage system for the Supercloud in which we 
decoupled consistency management from data transfer.  In the data transfer module, we can 
implement various schedulers for transfer.  On-demand transfer can lead to large delays but it is 
free while a VM runs.  Using a “hot-standby” policy all dirty pages are immediately copied to 
other locations, which reduces downtime during migration but it is exceedingly expensive while 
a VM runs.  We offer a “best of both worlds” option that tries to predict which pages are not 
likely to be modified again and likely to be loaded after migration.  We have also developed 
various schedulers for VM placement and migration itself.  We can for example leverage the 
Amazon EC2 spot market and get significant savings from smart placement. 
 
A second line of work yielded a compelling response to those who worry about cloud vendor 
lock-in and other limitations.  This work was done in part jointly with IBM and is already 
shaping IBM’s product offerings in the space.  It represents a breakthrough that eliminates the 
kinds of problems that previously inhibited military and government use of “public” clouds, to 
the extent that AFRL is currently working with us to apply the prototype in some real Air Force 
scenarios of interest. The Supercloud provides virtual storage that spans the various underlying 
clouds 
 
Our contributions are in various dimensions: 

• We developed the first Supercloud that spans heterogeneous clouds, often under various 
administrative domains, and showed how this can be done efficiently. 

• We developed and demonstrated various use cases for application-level migration as a 
first-class primitive.  (Other clouds implement VM migration but do not expose it to 
applications). 

• We developed novel scheduling and placement algorithms for heterogeneous clouds. 
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• We were among the first to apply Software-Defined Networking technology spanning 
multiple network domains. 

• We developed the first geodistributed storage system specialized for VM images. 
 
We believe that our technology can have a disruptive effect on the way companies use clouds.  A 
major trend in company cloud use are so-called Hybrid Clouds: a Hybrid Cloud is a cloud that 
consists of resources in a company owned cluster, backed up by a public cloud.  When the 
company experiences a load surge, it can utilize the public resources to add capacity.  If the 
company needs to test new software, it can utilize the public resources without affecting the 
private resources.  While extremely popular, it requires that the private cloud run identical cloud 
software as the public cloud.  In practice, this means that companies that want to use a Hybrid 
Cloud have to use VMware virtual machines and use the VMware public cloud for 
backup.  They cannot use open source virtual machine monitors and they cannot use popular 
cloud providers such as Amazon EC2, Google Compute Engine, Microsoft Azure, and so on 
(although some of these are starting to come out with their own proprietary solutions). 
 
Our Supercloud technology can completely change all this.  We already demonstrated virtual 
machines migrating between various open source cloud software for private clouds and various 
public cloud providers.  We should thus be able to significantly change the Hybrid Cloud 
landscape. 
The Supercloud supports Smart Spot Instances: Instead of making a trade-off between cost and 
availability, Smart Spot Instances can achieve low cost and high availability at the same time 
with the support of user-level live migration. User VMs runs as second layer VMs (sVMs), while 
the Amazon spot instances form the first layer VMs (fVMs). Then sVMs can be migrated 
according to a specified scheduling policy. 
 
Smart Spot Instances can increase availability compared to ordinary spot instances. Users set a 
high maximum bid, which can be as high as the on-demand prices. The Supercloud monitors the 
spot price and live migrates sVMs to other, possibly cheaper fVMs – either just another spot in- 
stance type, or even spot instances in another availability zone. In the worst case, the sVMs can 
be live migrated to normal on-demand instances that are always available, so the user only needs 
to pay as much as the on-demand price. When the price approaches the maximum bid in the 
middle of an instance-hour, the Supercloud migrates the sVMs to avoid being terminated.  
 
Smart Spot Instances can greatly reduce costs by taking advantage of price diversity in different 
types of the spot instances. When the end of an instance-hour approaches, the Supercloud 
compares the spot prices in each spot instance types and their regular prices, and live migrate 
sVMs to the fVMs that can achieve lowest overall costs regarding the different capacity of 
different instance types. 
 
A Supercloud allows companies, organizations, and individuals to move to a cloud computing 
environment while retaining control over placement and scheduling. In particular, a cloud user 
controls the location and live migration of their computation, networking, and storage without 
owning all of the underlying infrastructure—a level of control that is not available today. 
 



 
 

Approved for Public Release; Distribution Unlimited.  
10 

 

The Supercloud can take advantage of spot market pricing. It can migrate spot market instances 
across availability zones and providers, significantly reducing the cost for services and 
applications operated in the cloud. Further, we showed that the Supercloud provides significantly 
decreased and more predictable latencies than any of the underlying cloud providers 
individually. We also described the current status of the Supercloud implementation and 
discussed ongoing challenges. 
 
SuperCloud is our virtualized environment for cloud computing with transparent and automated 
migration from data center to data center even across vendors, using our standardized VM 
container.  At the start of this particular subtask, we had a running SuperCloud prototype, but it 
was not able to minimize the end-user costs.  For example, SuperCloud treated the client system 
as if it was just a single VM instance, when in reality a cloud client often runs a virtual cluster, so 
that in fact a group of VMs should be scheduled.  We set out to do a very systematic study of 
how to best exploit the Amazon Spot Market in the face of rational behavior (in the game 
theoretic sense). 
 
Without getting overly technical, SuperCloud is composed of three main parts.  One is a kind of 
“wrapper” to let it run on whatever the VMM on the cloud vendor system happens to be.  
Different vendors use different core infrastructures, and the “XenBlanket”, which is our name for 
this element, adapts the remainder of the system to match.  The second component looks like a 
standard Xen VMM, but in fact is adapted to support state snapshots and migration and to match 
the API of the XenBlanket.  These small changes ensure that SuperCloud can run on any cloud 
vendor system and can snapshot its state, ship it to another machine or even another data center, 
and restart there.  The third component is a virtualized network based on the OpenSDN model 
from OpenStack.  With these three running in concert, SuperCloud is able to support some 
striking new functions: 

• We can migrate a running application with low overheads, sending it to another machine 
locally or to one located (very) remotely. 

• We can follow the sun:  a series of migrations aimed at keeping a server close to the most 
active group of users (imagine here a kind of server that sees peak use from 9am-10am 
local time). 

• We can follow cloud “spot pricing” and migrate to the cheapest resources, continuously. 
• We can move from a damaged data center or one under attack to a safer one. 
• If a system has some resources that must be hosted locally and cannot be used from the 

cloud or moved into the cloud, we can migrate the application to those resources (like a 
database of images, a special radar device, etc.) as needed, use the resource briefly, then 
migrate back to the cloud once the activity is finished. 

 
Much of our SuperCloud work was done jointly with IBM, which is developing commercial 
spinoff products. Thus this research will rapidly transition into commercial practice.   
 
Vsync: Scalable and Consistent Reliability for the Cloud 
Vsync is a powerful new option for cloud computing that can enable scalable, reliable, secure 
replication of data, coordination and fault-tolerance, and can guarantee data consistency at high 
update rates even in the highly elastic first-tier of the cloud.  Vsync is actually a recent name: our 
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work started out using the name Isis2, but we changed it in protest after the terrorist attack in late 
2015 in Paris. 
 
The new name is a reference to the formal model used by the system, namely virtual synchrony 
[3, 48]. The model is a form of state machine replication with various optimizations available 
(but optional) that permit greater speed without loss of correctness.  This final report is not an 
ideal setting for showing code samples, but we have created many hours of videos to teach 
people how to use the system, demo programs to show how it works and that they can transform 
into versions solving their own needs, and even posted some recommended projects for people 
who are learning and need pointers on what they might try to develop to get a feel for the system.  
Developers work in C#, IronPython, IronRuby, F#, C++/CLI or any of the dozens of other 
programming languages available for Microsoft’s .NET framework, or on Linux using the Mono 
compiler and runtime libraries.  Vsync even automates use of cutting edge new communication 
tools such as Remote Direct Memory Access (RDMA) zero-copy data movement from one 
machine to another, using a reliable memory-to-memory DMA transmission at optical line rates. 
 
Extensive materials and teaching tools on the system can be found at Vsync.codeplex.com [5]. In 
summary, the Vsync software library helps developers build applications that will run on 
multiple computers, coordinating actions, sharing replicated data, moving files and other 
information at high speeds, cooperating to support key-value storage (DHT storage), etc. Vsync 
aims at sophisticated developers with challenging needs, and is designed to be highly secure, 
fault-tolerant, consistent and very scalable, even under "cloudy conditions."   For example, due 
to virtualization and multi-tenancy, cloud nodes often become overloaded for brief periods and 
hence show long scheduling pauses, and they sometimes crash in unexpected ways at rates that 
might seem surprising in other settings (these are actually fake crashes caused when the 
management layer decides to shut a node down and perhaps start some other image on some 
other node to replace it).  Notice that with SuperCloud, such an application could be 
continuously mirrored or, if mirroring is impractical, perhaps dynamically migrated.  But if the 
update rates are high and the overheads of SuperCloud are infeasible, sometimes we just build 
special purpose solutions, and Vsync aims at this case. 
 
These are complex systems to interoperate with and reliable, consistent, secure data replication is 
hard to pull off, particularly in a strong and theoretically sound model.  The premise behind this 
part of our project is that the need for such solutions is rapidly growing and hence that if we can 
package the needed solutions, developers will want to use them: with the trends towards data 
centers of all sizes and shapes (ranging from small racks of just a dozen or two machines to 
massive cloud computing data centers with hundreds of thousands of them), developers of 
modern computing systems need to target the Web, employ Web Services APIs, and yet 
somehow ensure that the solutions they build can scale out without loss of assurance properties 
such as data security (who knows what the other users of the cloud might be doing… or what 
might be watching?), consistency and fault-tolerance. The Vsync library was built to help 
developers solve this problem in an easy way, closely matched to the style of development used 
for standard object-oriented applications that use GUI builders.  
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After four years of active use by a diversity of developers, Vsync is quite stable now and rather 
mature. Meanwhile, we have begun some basic follow-on work, also sponsored by DARPA 
MRC, but under a reduced burn-rate extension after our main funding ended.   
 
In the follow-on activity we created a basic and very simple reliable data replication layer, 
Reliable DMA Multicast (RDMC), which runs on RDMA and offers reliable multicast using 
zero-copy RDMA, by building a highly efficient overlay tree and sending data in chunks, using 
reliable one-to-one RDMA transfers.  A paper on this work was sent to NSDI, not accepted, and 
is now being revised for submission to Middleware, but the software itself is working and offers 
the world’s fasted reliable data replication solution, whether for one copy or hundreds.  RDMC 
is coded in C++ and easy to use.  The download site is rdmc.codeplex.com [8, 49]. 
 
A second paper, just submitted to SIGCOMM, details another RDMA solution:  the Shared State 
Table, or SST.  SST is a framework with which nodes in a single rack connected by RDMA can 
share local states and detect system events. An SST over a group of nodes is a table consisting of 
a row for each member of the group and columns representing state variables. We provide a 
mechanism for defining system events (called predicates) and callbacks (triggers) over the 
entries of the state table. The triggers are executed when the predicates are detected to be true. 
SST focuses on minimizing the time to detect predicates with the secondary concern of judicious 
use of RDMA resources. SST optimizes for RDMA operations and abstracts them from the 
programmer, thus providing a convenient interface to code applications to run over RDMA 
networks.  Our preliminary work carefully examines the characteristics of one-sided RDMA 
reads and writes to support this model, arrives at an optimal design for the SST, and provides 
new insights into system design using RDMA for peer-to-peer architectures. SST adds minimal 
overhead over raw RDMA primitives and scales linearly with the number of nodes. Our 
experimental study measures delay for detecting different categories of predicates (we can reach 
event rates of 500K per second or more), and illustrates the use of SST in a scenario based on 
OSPF routing.  Again, the plan is to offer an open source release shortly [44]. 
 
This work will allow us to create a next generation Vsync solution that should run at data rates 
1000x or even 10,000x faster than Vsync or any other of today’s replication technologies.  By 
doing so we enable huge speedups across the spectrum: in the low levels, but also in file systems, 
in MapReduce computations, in real-time monitoring and management systems, etc.  We 
anticipate a revolutionary advance in decision-making tools, all made possible by blindingly fast 
data replication, enabling instant elasticity: something happens, and thousands of tasks can be 
assigned to tackle it, even if the data input to those will be large.    
 
IronStack: A secure and resilient network management infrastructure 
IronStack is a resilient network management solution aimed at a communication network that 
connects devices residing outside the cloud, such as sensors or video cameras, back to servers in 
the cloud-hosted data center.  Some settings have in-house solutions, and would not need 
IronStack, but for developers faced with creating such a system or desiring to upgrade a balky 
and idiosyncratic one, IronStack could be a good option.  Developer Z. Teo has focused on 
creating an open source preliminary version for use at Cornell and as a preproduction 
demonstration, but is planning to spin off a commercialized version soon.  The company will 
eventually offer a turn-key resilient network, 24x7 support and deployment help. 
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IronStack borrows some ideas from redundant array of independent disks (RAID) [50], a set of 
redundancy schemes commonly used to protect data by utilizing multiple hard drives. 
Analogously, the redundancy in data networks are provided by multiple disjoint paths from a 
source to a destination. However, current networks do not usually feature multiple disjoint paths 
because they are tedious to design, require a fair degree of manual configuration, and are 
difficult to maintain in a safe configuration over extended periods of time [51]. Also, software 
that takes advantage of multiple paths is rare in practice [3]. IronStack solves these problems by 
automatically generating a safe configuration for any given network topology, while allowing 
multiple paths to be used simultaneously without the need for any laborious configuration or 
forethought. IronStack is self-configuring, self-adapting and self-healing, so repeated changes to 
the network topology do not affect the operation of dependent network software. Thus, IronStack 
automatically manages the network efficiently in a way that is transparent to users. 
 
The way IronStack uses multiple paths in the network can be seen as a continuum of tradeoffs 
between latency/reliability and bandwidth efficiency. At one extreme end of the spectrum, each 
packet in a flow can be replicated onto multiple disjoint paths. The receiving end delivers the 
first arriving packet to the application and discards the duplicates. Such a scheme minimizes 
latency and improves the stability of the flow, while also tolerating up to n − 1 link or switch 
failures, at a cost of n times the bandwidth. On the other extreme end of the spectrum, each 
disjoint path can be seen as a separate channel through which flows can be sent through, so each 
successive packet in a flow can be sent down whichever path is first available (thus avoiding the 
problem of sending too many packets down congested paths). In a lightly loaded network, 
approximately 1/n of the packets in a flow can be sent down each path. This scheme maximizes 
bandwidth efficiency but clearly sacrifices on flow stability and latency, since the entire flow is 
now dependent on the slowest link. It also does not tolerate link failures although such tolerance 
may not be necessary if the software protocol can handle it (e.g. TCP with selective 
acknowledgements). 
 
The IronStack controller is capable of limited data transfers between a switch’s control plane and 
its data plane. It is thus possible for IronStack to entirely handle packet processing on behalf of 
the end hosts. The advantage of such an approach is that it enables all IronStack capabilities to 
the end hosts without necessitating any kind of hardware or software change, with the effect that 
end hosts are completely unaware of an underlying change to the network. In light of the 
difficulties in modifying individual network equipment operating system kernels as mentioned in 
the preceding section, such transparency is valuable since changes are localized to the switching 
equipment and its controller. However, this approach is not scalable because the bandwidth for 
transfers between the data plane and the control plane 4 is limited. Consequently, it is not 
possible to service too many concurrent IronStack function requests simultaneously. 
 
In work still underway, IronStack will be leveraging Vsync to replicate its controller using a 
form of state machine replication that Vsync offers as a kind of turn-key API.  This will make 
IronStack itself highly robust against disruption, resulting in a complete self-managed security 
and reliability story for owned networks that need to interface to cloud-hosted systems. 
 
IronStack has been used to operate Cornell’s Gates Hall network, which is a deployment of about 
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12 SDN switches and routers playing a complex mix of experimental and production roles.  
Interesting, Cornell turned to IronStack in frustration when commercial options like 
OpenDaylight and the NEC product simply didn’t work, and IronStack was an instant success.    
By now Cornell has moved most of the production work off IronStack simply because having a 
graduate student run our building raises awkward security concerns, but the technology 
performed flawlessly for six months and continues to run our experimental SDN deployment, 
with the exception of a few nodes running a competing SDN solution by faculty member Nate 
Foster.  IronStack publications focus on its automated methods for secure connection 
management, robust traffic splitting or replication over multiple routes, and its leveraging of 
NetFPGA hardware for packet encoding and deduplication.  An additional paper reports on 
experience with the IronStack deployment in Cornell’s Gates Hall.  
 
 
CloudMake 
Earlier we gave an example of transforming a face-recognition program developed “statically” 
into a version that can run as a resilient service in a cloud.  We mentioned that one task is to 
monitor the health of the service and restart elements of it as needed, when needed, under policy 
control by the developer.  This isn’t trivial because some services depend on others: perhaps 
before we can launch the server on a given node, we need to be sure that the image retrieval 
service is up and running on that node, and perhaps this in turn depends on running a copy of 
Oracle or SQL server or MySQL.   
 
CloudMake is a dependency specialist.  We based it on the popular Linux Make utility, which 
represents dependencies between code modules: if you modify app.h, and app is compiled from 
app.h and app.cpp, then Make is used to rebuild app, and anything depending on app.h too.  We 
realized that by writing down cloud management events (loads, node starts and stops, etc.) in 
small files, then when a program halts, its status file will update to reflect this, and we could then 
run a version of Make that would notice the failure, realize that the system configuration depends 
on the health status, recompute a new configuration, and then this can trigger launching a new 
copy, setting off an alarm, etc.  CloudMake does all of these things.  It uses a plug-in 
optimization module: a so-called “constraint solver” that can actually be any of a few dozen such 
systems, and will automatically do the mapping of application components to available 
resources.  Graduate student Theo Gkountouvas used Vsync within CloudMake, and hence was 
able to completely avoid duplicating the needed logic to make CloudMake itself resilient, 
scalable and fast.   CloudMake and GridCloud papers include [1, 10, GA+14, GBA14, ML+13, 
JB14]  
 
Freeze Frame File System 
We built the Freeze-Frame File System (FFFS) over our basic tool chain to demonstrate that with 
our tools, it is possible to capture real-time data and then provide secure, strongly consistent real-
time mirrored data sharing. The name evokes the image of a film strip, and this intuition is 
appropriate because FFFS offers a novel real-time snapshot capability.  One can do similar 
things with modern event driven database systems, but for data that isn’t naturally structured as 
database records, simple files (append-only logs or updated tables) are often more natural.  FFFS 
offers the same basic API as any file system, but can do reads at any desired instant in time. 
Further, it uses RDMA to provide zero-copy data reads and writes. 
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FFFS allows applications to explore the evolution of the power grid network state at any desired 
temporal resolution: in contrast to standard parallel computing tools that take a data set from 
some single instant in time, and apply large numbers of CPUs to carry out a computation on that 
single data set.  Indeed, with FFFS we can also parallelize by spawning a set of tasks that access 
the power grid state at various points in time, permitting analysis of trends that evolved over a 
period of time, and we can leverage the massive on-demand parallelism of the cloud.  The FFFS 
system also handles data replication, maintains a remote backup, and is designed to detect any 
tampering, so that the past state can be used as a trustworthy record of precisely how the power 
grid state evolved over time.   Again, by using Vsync to mirror its own core state and replicating 
the data stored by “data nodes”, FFFS can be strongly consistent and robust against disruptive 
failures. 
 
GridCloud 
Our story comes together in GridCloud, which is the system we created (with some additional 
funding from DOE) and delivered to ISO NE, NYPA and NY ISO for use in monitoring the 
smart power grid at the so-called “bulk” level.  GridCloud showcases many elements of our 
DARPA MRC-created technology base, although at this stage does not use SuperCloud.  But 
most of the remainder of our story is present, as the following summary illustrates.  In effect, 
GridCloud is not “the” application, but rather is the first of what we hope will be many solutions 
to nationally important mission-critical computing tasks that could not have safely run on the 
cloud with standard commercial software alone, but that can run on a cloud augmented by our 
tools.   
 
GridCloud has three main elements: a data capture layer; an archival storage “historian” and a 
runtime infrastructure that operates the system’s own components and also launches and 
supervises power systems analytic applications.  VPN and “private cloud” compute-node 
technology, encryption of data stored into files, and TCP encryption secure the solution against 
attack. 
 
GridCloud’s outward-facing data collector applications capture data from the grid, store it into 
the historian, and then forward the data to applications running on the platform. These processes 
are both numerous but very lightweight: they can run on very inexpensive cloud components.  
However, inexpensive cloud components are less reliable than more expensive cloud virtual 
machines and the connections themselves are delay-prone, so we replicate the entire data 
collection infrastructure.  As seen in Figure 1, we aim for 3 replicas per data collector.  If failures 
temporarily knock the number down GridCloud automatically repairs itself.  In GridCloud, keys 
are stored only in the ISO’s private key repository.  To enable cloud security it is necessary to 
provide these keys to the cloud infrastructure software, but they would never be stored in 
persistent cloud storage.  
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Figure 1: Overall Grid Cloud Design 

Managing a complex cloud system demands continuous observation, adaptation, and fault-
tolerance, and one of our early realizations was that existing cloud tools don’t fit this need very 
well: there are many such tools, but they tend to assume that the cloud applications at the edge 
run in relative isolation, whereas ours is a world of highly interconnected services that talk to 
one-another.  For such componentized systems to work correctly, the key elements must all be 
running, and if some node shuts down, the applications that were running on it must be 
relaunched elsewhere.    We address this role with CloudMake, the system mentioned earlier.   
The general architecture can be seen in Figure 2.  In steps (1) and (2a,b), CloudMake queries the 
Operating System (OS) to track application health, while also monitoring application-generated 
status reports that are stored into XML files (similar to small web pages).  If a change in the state 
occurs (either from the OS or the application processes), the local CloudMake Daemon forwards 
the change to the CloudMake Leader (3) where the policies are enforced (4). Then, the 
CloudMake Leader returns all the changes in the configuration to the corresponding local 
CloudMake Daemons (5) and the configuration is shared between them and the application 
process in an XML file (6,7). Each policy has an associated leader, which behaves like a single 
logical entity, but the leader actually runs as a Replicated State Machine to provide fault 
tolerance, using the Vsync group communication system to implement this form of fault-
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tolerance.  If a component fails, CloudMake immediately launches a new instance to restore full 
functionality. 

Figure 2: Using CloudMake to manage GridCloud 

A final component of GridCloud is the Freeze Frame File System, discussed previously.  In this 
role, FFFS captures and archives data received from the PMU and PDC data streams, as well as 
other incoming updates such as changes to the network model, updates to key parameters, etc.  
This data is recorded into files, and applications can thus either tap into the live streams and run 
in real-time, or can run on the archived data in near-real time or even long after an event.  The 
temporal read features of GridCloud’s FFFS allow the users to summon up any past network 
state they desire, much like a database query but without forcing data into a database schema, 
cleaning data in ways that might hide important inconsistencies evident in the raw streams, etc.    
This enables quick search of the past: has an event of this kind occurred previously?  How often?  
What did we do last time we saw it?  How well did that work?  Over time, we expect that 
GridCloud will host many such solutions (in these very preliminary stages of use, we are still 
focused mostly on real time network state tracking: the continuous state estimation task. 
  
Experiments, reported in [1], detail our findings.  The replication scheme shown in figure 2 
indeed allows us to mask network delays and disruptions, and replication internal to GridCloud 
lets us carry out state estimation redundantly to hide other problems such as overloaded cloud 
nodes or sudden migrations.  We are able to track state even at national scale, with delays of 
hundreds of milliseconds between when sensors capture data and operators see it, even using a 
data center on the other side of the country as a backup for events occurring in the Northeast.  
And we can confirm strong consistency for the system as it runs.  The ISO teams expect stringent 
security, and for these purposes, we were able to satisfy their requirements.  Thus there is solid 
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evidence that our MRC effort focused on the right problems, solved them, and produced a 
technology that the critical systems community can use. 
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5. CONCLUDING REMARKS 
 
Our DARPA MRC effort set out to show that hybrid clouds blending private systems and sensors 
with commercial (government) cloud platforms could provide real-time guarantees, strong 
consistency, exceptional scalability, and the flexibility to leverage the low cost of the cloud 
without vendor lock-in and without putting sensitive data into the hands of cloud providers.  We 
believe that our work was successful.  We created powerful tools that are interesting in and of 
themselves, and then used them in an important real context, reflecting a major military priority 
as evidenced by the RADICS solicitation.  Further, our work on leveraging RDMA technology is 
opening the door to huge speedups for data replication, which in turn could enable dramatic 
advances in the use of machine learning and computerized decision support for real-time cases 
such as to assist forward-deployed military personnel. 
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6. RECOMMENDATIONS 
Looking to the future, we would urge AFRL and DARPA to think about the general power and 
potential evidenced by our success not merely solving these foundational problems, but also in 
applying the solutions to create GridCloud for the bulk electric power community.  We have a 
proposal pending in the RADICS program and should not lobby for it here.  But we do wish to 
end on the observation that there are many settings in which a real-time cloud, hardened with 
military use cases in mind, could transform our options both in the services today (we would 
point to the AF concept of “Distributed Operations” as an example: our work offers a possible 
substrate for supporting this important idea), and in the government and private sector, where the 
need for robust, secure, consistent systems with powerful real-time guarantees is already 
apparent and will surely grow over time. 
 
More broadly, we’ll simply reiterate a point mentioned in the discussion above.  Recent success 
with machine learning has in some ways distracted from the need to reliably and security get the 
data to the machine learning solutions, to run them reliably and security, and then to get decision 
support back to the forward-deployed combatant or to other front line system elements.  We need 
to invest and carry out research to create these kinds of ultra-fast, ultra-reliable infrastructures, 
because without them, even the most amazing advancing is machine intelligence will be 
inapplicable to the settings where we would wish to leverage them.  Our success with the power 
grid project should thus be seen as a hint of what can be accomplished in a dozen such settings: 
in Air Force distributed operations systems, for example, or in decision support for pilots in our 
cutting-edge aircraft.  The game isn’t purely one of machine learning: getting the data to the AI 
system, and taking actions with minimal delay, is at least as important an objective!  Our 
DARPA MRC successes point to a much larger opportunity. 
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